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One approximates Fleck’s radiative transfer equation by a diffusion equation when the
mean free path of the photons is small. This diffusion approximation is used in a Monte Carlo
method to substitute a jump of the particles for a large number of collisions in the optically
thick media. © 1987 Academic Press, Inc.

INTRODUCTION

To solve numerically the radiative transfer equations on a fixed time step, Fleck
and Cummings [1] have proposed to evaluate implicitly the emission temperature
through a linearization of the energy balance equation.

Therefore in the photon transfer equation, we substitute a pseudo-scattering term
for a part of the emission-absorption terms. With this time discretisation scheme,
the radiative intensity I(7, x, €2, v) of the photons (at time ¢, position x, with the
direction & and the frequency v) satisfy the so-called Fleck’s equation on each time
step
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where: x belongs to a spatial domain D of R®, Q belongs to the unit sphere S? of
R’, and v belongs to (0, oo). The temperature T is assumed to be constant on each
spatial cell. For this temperature, denote by A(v) the reduced Planck function, by
k,(v) the absorption coefficient and by / Fleck’s coefficient. Moreover ¢ is equal to
T, up to a constant.

Q is the Thomson scattering operator which corresponds to the changing of the
direction of the photon velocity.

The classical Monte Carlo method is well adapted to solve Fleck’s equation (x) if
the pseudo scattering mean free path [(1—1)k,] " is not too small with respect to
the size of D, that is, if the scattering term is less important than the streaming
terms. But in an optically thick medium (1—1/) is very close to 1 and k, is very
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large, thus the pseudo-scattering mean free path is very small and there are a lot of
collisions in any small subdomain; so the tracking of the particle becomes highly
time consuming.

To accelerate this Monte Carlo method, we describe in this paper a method to
avoid very complex trackings of the particles in the optically thick media. The prin-
ciple of this method is to use a jump as a substitute for the trajectory of a particle
which undergoes a large number of collisions in a cell. This jump will be sampled
according to the law I(z, -), where I is the solution of a diffusion equation which
approximates () in the case of an opaque medium.

In order to find this approximation we make an appropriate scaling in equation
() with a small parameter ¢ related to the mean free path k,(v) ™! of the particles
and we calculate the limit 7 of the solution 7 of (x) when & goes to 0 (this is the mul-
tiple scale technique).

We first give the result of the calculation with an error of order O(g?) (in
Sect. 2.1) and an improvement of this result is given in Section 2.2. This method
works because the limit equation is simple enough and it is easy to have an explicit
solution of this equation, if we consider the case where the spatial cell is a sphere D.

In Section 3 we derive the transfer equation satisfied by a Monte Carlo particle
and we give the explicit solution of the corresponding diffusion equation. This
solution gives the law of the escape time of the particle out of the sphere D and the
space distribution law of the particle at the end of the time step if it has not
escaped. Afterwards (Sect. 4) we study some criteria for the validity of the diffusion
approximation using a Monte Carlo computation in a sphere. Numerical results are
given in the last section, they show that there is a very good agreement between the
classical Monte Carlo method and the method which is accelerated by the random
walk procedure, although the computer time is much shorter.

From a philosophical point of view, this method looks like the one of Fleck and
Canfield [2] and Lynch [3]. But the way to determine the characteristics of the
jump replacing the tracking of the particle is based on an analytic method instead
of a probabilistic one; then it is possible to determine when it is appropriate to sub-
stitute a “random walk” jump for the detailed tracking of the particles.

The outline of this paper is:

1. Setting of the problem. 2. Approximation results. » First result. ¢ Improvement of the approximation.
3. Diffusion approximation of the transport equation satisfied by a Monte Carlo particle. « The transport
equation for a particle. » The diffusion approximation. e Explicit solution of the diffusion equation.
4. The random walk procedure.  Criteria for random walk. e Description of the random walk
procedure. 5. Numerical results. References.

1. SETTING OF THE PROBLEM
We consider the radiative transfer phenomena during only one time step (say:

{0, 1] for the sake of simplicity). The framework of Fleck’s modelization is the
following one (see Fleck—Cummings [1]).
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The absorption coefficient is assumed to be independent of time and space
variables in D and the initial temperature T is assumed to be constant on D.
Let us denote

c, the velocity of light,
P, the material temperature to the 4th power up to the multiplicative con-
stant ac/4n (ac/4 is Stephan’s constant): @ = (ac/4n) T¢, and

15 ok h
b(v)= g f T KT <£ —E%and h, K are classical constants>

that is, {& b(v) dv=1; ®b(v) is the Planck function.

krn(v), Thomson’s scattering coefficient,
ko(v), the absorption coefficient,
kp= j k. (v)b(v) dv, Planck’s absorption coefficient,

0
E(D), the specific internal energy; ' = 0&/0®.
[=[144nct'€¢ "kp17 !, Fleck’s coefficient, (H
a.(v)=1lk,(v), pseudo-absorption coefficient, (2}
o V)= {1-Dk,(v), pseudo-scattering coefficient. (3

Then the radiative intensity I = I{t, x, Q, v) satisfies

. 161 of
(i) oy Q@ + (o, o) I+krOI
hab «© ’ ’ t dﬂ, ’ .
- L LZJS(V VI, v) g dY = 0,b® 4)

(i) I(t,x,Q,v)=0, ondD"
(iii) (0, %, @, v)=T1"(x, @, v),
where 4D~ = {xe 0D, Qe S?/n, - @ <0}, n, is the outward unit normal at x to the

boundary 0D, and Q is the Thomson scattering operator defined by

dgy’

(@)% Qv =10, @)~ |_[1+ (@)1 1@) 5

" =1(x, Q,v) is the initial radiative intensity.
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Then we have to solve the following scalar equation in order to find the tem-
perature @' at time ¢',

E(D)— E(D) = E,/|D| — 4nt'lkp D,

where E,,, is the absorbed energy in Dx [0, 1],
o w0
Eno=1 di| dx| dvi dQoe,(v)I(1,x,Q,
e di] x| av| d@oe)inx @)

and | D} is the volume of D.

2. APPROXIMATION RESULTS

In an opaque cell the mean free path between two collisions becomes very small,
the frequency distribution of the particles converges towards a Planck function, the
velocity distribution becomes isotropic, and the spatial density becomes very close
to the density of a diffusion process. The aim of this section is to give a
mathematical form of this fact.

Therefore consider an opaque cell D and assume that

¢! is small enough with respect to the charateristic size of D, (6)

! is small enough with respect to 1. (7)
So we introduce a small parameter ¢ and define

a(v)=¢o(v)

(8)

Let us introduce some notation:

X is the projection of a point x of D onto 4D
© ' r dﬂ, r,
Wrmy=["| s

op=ob));  qe=<{gb)) [then &qpop'=11-1)""];
Lf =of — o5 'ab<{{af >) + wOf;
L(7 x, Q, v)=I(i/ec, x, Q, v).

9)
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Equation (4) may be written in the form

o1, 1 oI, 1
—8‘;'+—£'Q~6—x"+g§LIB+QIS—Qb¢

() I(,)=0 ondD"
(iii) 1,0, )=1"

(1)

2.1. First Result

Let us denote the Laplace operator by 4.
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(10}

ProposITION 1. Let I be the solution of (10). Let uy and u, be the solutions of the

diffusion equations

Ouy 1
e Aot gyl $)=0
(i) uo(f,x)=0 on 0D

(iii)  uo(0, x) = (LI™(X) ),

.o Oup 1
(i) ‘é?“go_—o Axul+qpu1'—0

(1)

3 . Loduy .
(i) (%) +e=222G x)=0  onoD
oy 0,

(i) u,(0,x)=0

(12)

with 6= {{b/(0 +))>) and where L, is a constant depending only on cjc,, and w.
Then there exist two functions ¢ = @(s; X, Q, v) and f =y (&; 1, %, Q, v) corresponding

to an initial layer term and a boundary layer term [ie., they satisfy

lim ¢(s; -)=0, lim (g -)=07,

5= 0 &= oc

and we have for small ¢,

b(v) Ou, .
g(v)}+w 0x

I(i %, v)— {b(v) uo(f, x)+¢ [b(v) u (i, x)— 8-
f éx I 2
+ @ (?; x, £, v> + ey (—8—; L,x Q, v>} = 0(e”),

where &, is the distance between x and 0D (¢, ={X—x)-n,).

X

(7, x

(127)
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The meaning of this proposition is the following. In an opaque cell D, except in a
short time near =0 and except in a boundary layer, the spectral distribution of the
solution /, is a Planck distribution, and 7, may be well approximated by

b(v) [uo-f—eul —E{-‘SQ-%I—;Q].

The details of the proof are given in Giorla-Sentis [4] but we give here the formal
calculus which is behind this result, using the multiple scale technique. (This techni-
que has been used for a Jong time in transport problems in a large number of
papers including [5, 6] and the references of these papers.)

First, one considers the asymptotic expansion of I,

{ P
L=I+el, v+’ L+ L+ ¢ (—2; x, O, v> + ey (é, L% Q, v) +1,0

H &
One introduces this expansion in Eq. (10). When one sets to zero the terms which
are of order ¢ 2, ¢! and ¢° one obtains

Ll,=0 {13.1)
I
L11+9-@=o (13.2)
ox
oI, oI,
A Yo _ = 133
LL+Q 6x+at+qlo gh® =90 {13.3)
a—"’+L¢=o (13.4)
os
0(0; x, Q, v)+ 1,(0, x, Q, v)=TI". (13.5)

Equation (13.1) yields

I,=bu,, where u, depends only on 7 and x.

Then (13.2) yields

b Q'%wLbul, where u, depends only on 7 and x.
c+w ox

[1 =
And for the existence of the 7, solution of (13.3) it is necessary and sufficient that

<<ﬂ%§?>> *%?* b >yt~ $)=0.
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If one introduces the value of I, in this relationship, one obtains (12)(i). On the
other hand, (13.4) and (13.5) give

¢ =e" (1"~ buo(0)),

where ¢~ denotes the semi-group whose generator is —ZL. Since ofs;}—
b{I™ — bug(0) )Y when s goes to oo, one sees that ¢ will be an initial layer term if
and only if

uo(0) = I ).

So one obtains {12)(iii). Moreover, (12)(ii) is the condition which is compatible
with (10)(ii). Thus it is necessary that u, satisfy Eq. (12). With this choice of u,, it
may be proved that

~

L, ) - [buo(f, S (5— ﬂ — 0(s).

-3

To obtain the desired result, one has to take into account the terms which are of
order ¢, that is, it is necessary to have

oI, ai,
CNEECNE U, I =0. .
LI, +Q 6x+ 5 +qgI,=0 (13.6)

Moreover, for any X on the boundary dD, the function (¢, 7, %, 2, v) has to satisfy

o
‘nL — ff =
Q nxﬁf+LV 0

YO L%, Qv+ (74X, Qv)=0 if ©-n,<0

(14}

The solvability condition for (13.6) gives (12')(i) and the condition for
lim, , (& -})=0 gives (12')(ii). Thus it is necessary that u; satisfy Eq. (12'). With
these choices of u, and u,, it may be proved that I, is a O(g?) term.

One can now check that uy+ eu, = u+ O(e?), where u is the solution of the dif-
fusion equation

.. ou 1
(1) E?ﬂgz‘-oAu+qp(u*¢)~0
. Ly0 {1
(i) ut+e=222=0  onaD (15}
oy On

(i) w0, x)= ™.

The boundary condition (15)(ii) (called Robin’s boundary condition) means that
the diffusion approximation is more accurate if we introduce an extrapolation
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length (here, &(L/0,)). This fact has been well known for a long time when one
approximates a classical transport equation by a diffusion equation (this has been
rigorously proved in Bardos—Santos-Sentis [57).

The diffusion coefficient is not exactly equal to Rosseland’s coefficient. In fact the
approximation principles are different in both cases: Here the temperature is
assumed to be constant on D; in Rosseland’s approximation there is equilibrium
(up to order O(s)) between material and radiation (see, e.g, Badham-Larsen—
Pomraning [6]).

Since the angular dependency is not crucial, we may drop the term (Q2(0uy/0x))
whose integral over S? is zero. Since the boundary layer term may be dropped also,
we obtain

L1, x, ©, v) ~u(t, x) b(v) + e L3I0 — b D))
with u a solution of (15). (16)

2.2. Improvement of the Approximation

For the sake of simplicity we now drop the right-hand-side term of (10)(i). (As a

matter of fact in the sequel (cf. Sect. 3) we only use the previous result in this case).

Since an  accurate estimation of the absorbed energy (ie,

& j p<ql (1, X)) dx dt) is required, the previous approximation (16) may be quite
crude. Indeed if there is no spatial variation of I,, ie., if I, =I,(7, v) satisfies

1
%if+—2-uﬁ+q1£=0
I & (17)
I(0,v)=1",
then the previous approximation yields
L(E, v) = b(v) (D) + e~ H7E[ 1 = b{KI )Y 1+ O(e?),

where
du

==qplU

di
u(0)= {I™).
But it is easy to find the ¢? corrector for 7,
L(,v)=a(}) b(v) + %(?) y(v) + e L[ — (PSS T + 0(eY)

(up to an £ initial layer term), where

ool e ()
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and # satisfies

~

o . 2(qp  qe\|_
et D e
7(0)= (7)) + &7 [qp <<5;->> I <<f1“>>].

Using this remark, we can improve the result of Proposition 1, and instead of
{16) we take

(5 %, @, v) = a(i, x) b(v) + %a(F, X) z(v) + e HEIN =TT, (19)

where # is the solution of the equation

- '
2~“Axﬁ+[qp+82<&-€3>]ﬁ=0 inD

dt 3o, Op Owm
ﬁ+3£‘9—0—1—{=0 on 8D (20)
G On

80, x) = (CI™>) + &2 [qp <<5~>> i <<P">>].
o O

Now we write the result (19) with the help of the original variable . Thus the
coefficients ¢, and ¢, are changed into

==t
()

We can check that the Robin boundary condition is equivalent (up to a O(&?) term)
to a Dirichlet condition on an extended domain D = {x e R*/dist(x, D)< Lyogzy }.
And we have

21

I(2, x, Q,v) = it(t, X) B(v) + e =L — LYY, {22}

where # is the solution of

10 1 5 _

L Aa+I kY a=0 inD

¢ 0t 3opw

=0 on 3D (23)
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with

. [ b(v)  b(v)
b(v)=b(v) +5—k» (ka(v)v—E;)

et (ke (T
* T T T ey <<1“">><<7€>>)‘

We can now estimate the energy absorbed during the time interval [0, ¢ ] with
the formulation (22),

[ ot 03 de=1¢kB>> [ ate, x) i
0

0
42 <<fﬂ/e e B — h(CTRSY) ds>>
(4 0

~ Ik BYD jo (s, x) dt

2

+E (oo bcmy @),

But it is easy to show that

o] rm-rcmma) - (-(E) ()

We can conclude that

! - I 1 .
|| Coutte )y dr= 1B [ ate x) e+ Ly =0, 001 (29)

So we shall obtain the same estimation for the absorbed energy if, instead of (22),
we use I(¢, x, Q, v) ~ I(¢, x, Q, v), where
I(t, x, Q, v)=1ii(t, x) b(v) for >0, with @ solution of (23), (26)

and if we take (25) into account.

3. DIFFUSION APPROXIMATION OF THE TRANSPORT EQUATION
SATISFIED BY A MONTE CARLO PARTICLE

Let us recall the main outlines of the classical Monte Carlo method to solve (4).
On the time step [0, £'] particles are emitted from the source § (including volume
emission, boundary emission, and initial radiation energy) and are tracked from
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collision to collision until the time ¢'. Formally this corresponds to a random walk
R,~R,—» - >R, in the phase space #={R=(s,x,,v)}, each point
corresponds to collision, census, or escape event.

3.1. The Transport Equation for a Particle

We take an interest here in only one Monte Carlo photon already emitted. For
the sake of simplicity we suppose the particle to be emitted at time 1,=90, at point
X, with an energy {or weight) ¢, =1. The initial direction £, is supposed to be
uniformly distributed on the unit sphere S? and the frequency v, is sampled from a
given probability f(v) on 10, + oo [.

Since the diffusion approximation needs a constant temperature in the whole
domain, we must track the particle in a part D included in the cell containing x,.
The transport problem corresponding to this photon is then Eq. (4), without the
right-hand-side term of (4)(i}, that is,

101 oI kb , ;o Y
it g R 0T jo Lzas(v VIRV dv' =0

=0 if (x,Q)edD"

o,
3]
~J

e

1
0, x, &, v) = ed(x ~ x;) Ef(v) {6 is the Dirac distribution).

The emission and tracking of the photons are equivalent to the sampling of a
random walk {R,, R,,.., R;,..} related to a probability p computed from the source
S(R,} and the stochastic kernel (R;,—>R,,,) (see Spanier-Gelbard [77). The
relation between this probability p on the space of random walks and the intensity 7
solution of (27) is given by the following:

For every function G on %4, we can construct a random variable g, such that

ELg]=| GR)IR)dR,

where E_ [ g] is the expected value of g with respect to p.

For our purpose there are three very important random variables. These are
defined at a time corresponding to an event of the tracking, i, at a time ¢, of the
random walk {Ry, R,,..,R;,..} (it is always possible to stop the photon at ¢, for
computing these estimators and to continue the tracking since this is a Markov
process).

Radiation energy (or weight) at time t,,

e(ty)=1

e(t;)=e(t;_,) exp{ —~aa{v, _)elt,—1,_ 0}
e(t)=0 if x;¢D.
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Absorbed energy on [0, ¢,],

eans(f) =1—e(1))

Z_I!I [t —exp{—0a,(v,_ ) clt;—1,_1)}] if x;eD.

Number of particles at time t;,
eolt;) =1 if x;eD
eo(t;) =0 if x;¢D.

These three random variables have the following expected values:
Radiation energy on D at time f,

E,[e(t)]=Ex(0) =% jD dx jow P LZ dQ I(R).

Absorbed energy in Dx [0, 1],

E,[ean(t)]= Eu(1) = L’ ds jD dx j:o & jsz A 6. (v) I(s, x, Q, v).

Average number of particles in D at time i,

E,[eo(r)]=E%(t) =% jD dx J:) dv LZ dQ I°(R),

where I° is the solution of the transport problem (27) without the absorption term

1610 610 kab * ’ ! ’ dﬂ’ [
;—&7+9'-6—;+kal°+031°— e L LZGS(V)IO(Q,V)A'—ndv =0.

3.2. The Diffusion Approximation

Let us now write the diffusion approximation of Egs. (27) given by (26). We
introduce the function #(z, x) solution of the diffusion equation

1 0ii 1 _
S 4a=0

c 0t 3opw H=5 xeD

=0, xeoD (28)

#(0, x) = o(x — X;)-
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Let us define

Gp= LOO Ik, (v) B(v) dv = lky [1 Al Tl?i (1 _—%>].

The specific energy 7 supposed to be isotrope, is then approximated for >0, by
(1, x, Q, v) =4il*e'&1>”5(v) (1, ). (29)
n

Interpretation

We can see from Eq. (29) that, when the approximation is feasible, the weight of
the photon is

e(ty=1,exp{—Gpct}

and the frequency is distributed according to h(v) which is, to first order, the nor-
malized Planck function b(v). The position x at time ¢ is distributed according to
(1, x).

Because we have removed the initial layer, we must make this approximation
only when time ¢ is large enough. Consequently there is a discontinuity for +=90 in
the expression of 7: the weight of the photon (e,=1 at r=0) becomes I, when
t—0%, r+#0. We can say that this jump comes from the modification of the fre-
quency spectrum (f(v) at 1=0 becomes (v) at 10). The difference (1 —1.)is
added to the absorption energy into D as shown in Section 2 (Figs. 1 and 2).

2. 4.
t (ns)
FiG. 1. The domain D is assumed to be R® Here k,{(v)=Cv3exp(—v/T) f(v)=k,(v) B(v} k5 !;
l~= 107°. The Monte Carlo solution of problem (27) is compared with the diffusion approximation
Ex(t)y=1, exp(—é6pct) and with exp(—dpct).
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01l

F1G. 2. With the same assumptions as in Fig. 1, we plot the frequency spectrum at time ¢=0,
t=10"2gsand r=10"7s.

3.3. Explicit Solution of the Diffusion Equation

We now assume D to be a sphere of R? with center xq. Since the temperature
must be constant in the domain D, D will be the largest sphere with center x,
included into the cell. We denote by R, the radius of D, R,=R,+ Lyogy the
radius of D and r= ||x —x,]| the spherical variable.

The solution # of the diffusion equation (28) in D is

1 & .
it ry=— z sin <£) 47,
2R3n=1 r RO

where

A ex {_ ct 1r2}
— P 3O—RWR§.

We introduce the two functions

R
F(1, R) = jo (1, r) dnr? dr

& sin n
=— E A7 X X R
. ( cos nX + X)

n=1
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where X =nR/R,, and

P(t)=F(t, R)=2 ¥ (—1)y"+ 4",
n=1
P(t) is the average number of particles in D at time ¢ and the function
R — F{t, R)/P(1) is the spatial distribution of particles in the sphere at time ¢.
Thereafter we shall use P(¢) instead of F(z, Ry). The difference between these two
quantities is small and P(¢) has the advantage of depending only on one parameter,
We can then write the radiation energy and the absorbed energy using only P(s),

E(t)y=1,e"""P(t)
Eult)= (1= 1)+ 1, | cGpe 2" P(s) ds
1]

Let us recall that the first term (1 —17,) comes from the jump at =0 of the
radiation energy, i.., of the integration of the initial layer.

4. THE RANDOM WALK PROCEDURE

4.1. Criteria for Random Walk

We must determine empirically the domains of validity of the diffusion
approximation of Fleck’s transport equation in a sphere. To do this, we compare
the solution of (27) calculated using Fleck’s Monte Carlo method with the exact
solution given in Section 3.3. A priori, these conditions are:

—The coefficient / must be small enough to satisfy the assumption (7) and to
allow the asymptotic expansions in &

—We must observe the tracking at a time large enough (see Sect. 3.2).

—The radius R, of the sphere D must be large (compared to o4y,) in order to
satisfy the assumption (6).

The extrapolation coefficient L, is determined by comparing the numerical
solution of (27) with the family u, depending on the parameter L,. When the
macroscopic absorption cross-section &, does not depend on the frequency and
when there is no Thomson scattering (k, =0), the coefficient L, was calculated by
Chandrasekhar [8] and the numerical tests give us the same value L,=0.71.

We will study with particular care the case of analytical opacities without Thom-
son scattering,

constant hv 1
) = (1 -exp { - 21 ).

kTh = 0

381/70/1-11
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We will consider three different distributions of the initial frequency

S(v)=b(v) [then 7, =1]
_ k() b(v) PR PR A VPN !
A e [g..1+1_l(1 kM>_1 1639Tj7]
Sy —vr): gt (K ke
sor=stwi | =t () |

We can see that the frequency is distributed according to b(v) =~ b(v) when the
diffusion approximation is suitable. The first distribution f(v) corresponds to a par-
ticle we track just after its random walk. The second distribution is exactly the fre-
quency spectrum of a particle emitted in the cell during the time step. It is also the
distribution of a photon just after a Fleck collision. When the frequency of a par-
ticle is not distributed according to these two functions (e.g., when the particle
comes from another cell) we used the Dirac 6(v — v,), where v, is the frequency of
the photon.

The numerical tests show that the extrapolation coefficient is around 2, and that
the diffusion approximation is suitable when using the criteria (Figs. 3-5),

1<0.01
Ry=50xw
and
Ry> 505 (vg) it f(MY=68(v—vy).
1, ——— ]
1
.01
Er

10,

10,

r ns) )

FiG. 3. Estimation of the extrapolation length. Comparison between Monte Carlo estimation and
diffusion approximation (for various values of L,) of the number of particles E°(¢) and the radiative
energy Ex(z). Here D is a sphere of radium 5o, and /=103
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Fic. 4 Domain of validity. Comparison between Monte Carlo estimation and diffusion
approximation of the number of particles E°(z). D is a sphere of radium xo5), with /=10"% and L,=2.

The last criterion ensures that the photon with initial frequency v, has a {irst
Fleck collision near the center of the sphere. (The particles of high frequency, emit-
ted, for example, from a hot black body, go through the cell without Fleck
collisions and they do not satisfy this criterion. )

The tests prove that the frequency spectrum tends to b(v) very quickly and that

the term 7, in the expression of the energy yields a more accurate result, without
any additional computation.
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Fic. 5. Comparison between Monte Carlo and diffusion approximation of the radiative energy Eq{(1)
and the absorption energy E,(t) with the same value as in Fig. 4.
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4.2. Description of the Random Walk Procedure

The random walk procedure is grafted on the Monte Carlo method without dis-
tinction between optically thin or optically thick medium. At the beginning of the
tracking of each photon (going from an event R, ; to another R;) we calculate the
greatest sphere D with center x;_ , included in the cell and we test the random walk
criteria. If they are satisfied we sample the escape time 7 from D according to the
distribution 1 — P(t). The absolute escape time is then §=1¢,_ +1.

If ¢ is less than the end of the time step, the particle’s position x; is sampled
uniformly on the boundary éD, the frequency v; according to (v), the direction Q;
is distributed according to Lambert’s law outside of the sphere and the new weight
is

€j=3j_11* exp{‘ﬁpC(tj_’[j—l)}'

If 8 is not in the time interval, we stop the photon at the end of this one. The
radius r is sampled with the repartition F(¢, r)/P(¢) in [0, R,] and the position x;, is
uniformly distributed on the sphere of radius r. Then v, is sampled according to
b(v), L, is uniformly distributed on S? and the weight ¢; is calculated as previously.
(Note that the procedure is the same as in [2] and [3]; however, our diffusion
approximation is not the same except for coefficient oy ; moreover the sample of
frequency and escape time, and the calculus of the absorption energy are not iden-
tical.)

5. NUMERICAL RESULTS

We now present a numerical example with the random walk procedure. It is a
problem described in Fleck—Cummings [1]: A slab of thickness 4 cm, with an
optically thick medium between 2 and 2.4 cm is heated by a black body source. The
spatial step size is 4x=0.4 cm and the cross sections are

kr,=0

2 o
k,= —v—;z <1 —exp {— %}) if vand T are given in kilo-electron-volts.

In the sixth cell, the macroscopic cross-section k, is multiplied by a factor of
1000. (Note that it is not the factor used in Fleck-Cummings [1].) The boundary
conditions are

—Black body emission with 7’=1 Kev in x=0cm.
—Purely absorbing medium for x >4 cm.
—Initial temperature T, =0.001 Kev.
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Fi6. 6. Temperature T versus time in the ten cells using computation (b) and temperature versus
space at different times.
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The medium is supposed to be a perfect gas. The specific energy & is given by the
equation of state

£=6991310°x T  (in CGS units).

We have compared three computations:

(a) Fleck’s Monte Carlo method, without random walk.
(b) Random walk with L,=2 and the criterion R,> S04y,
(c) Random walk with L,=0 and the criterion R;>200gy,.

The results are the same up to the statistical fluctuations.
At time r=1ns (1 ns= 107 sec), with time step 4¢=0.02 ns, we have

(a) (b) (c)
Computer time 3 h 04 min 6 min 22 min
Number of 13,233 13,381 13,355
particles
Number of Fleck’s 379 x 10¢ 11 x 10% 44 x 108
scattering
Number of random 0 89,000 59,000

walk procedures

Remark 1. The random walk procedure with L,=0 and the criterion
Ry =504y, gave us wrong results: the extrapolation length is essential.

Remark 2. Fleck’s coefficient / is very small in the opaque medium
(/~5x10~*). Hence it follows that ¢p ~ lkp.

Conclusion

The diffusion approximation of Fleck’s transfer equation given by the multiple
scales technique is well satisfied by the numerical tests, hence the random walk
procedure which has been described is reliable when the criteria of validity are
satisfied.

The method which has been described here for Fleck’s equation may be used for
other equations where the streaming terms are the most important except in a
collisional region in which the scattering term is very important, e.g, in the
Fokker-Planck equation for charged particles in a plasma. The crucial point of the
method is to find an accurate limit of the solution of the considered equation in a
collisional region such that this limit function may be computed very easily for a
simple geometry.
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