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One approximates Fleck’s radiative transfer equation by a diffusion equation when the 
mean free path of the photons is small. This diffusion approximation is used in a Monte Carlo 
method to substitute a jump of the particles for a large number of collisions in the optically 
thick media. c 1987 Academic Press. Inc. 

To solve numerically the radiative transfer equations on a fixed time step, Fleck 
and Cummings [I] have proposed to evaluate implicitly the emission tem~eratu~e 
through a linearization of the energy balance equation. 

Therefore in the photon transfer equation, we substitute a pseudo-scattering term 
for a part of the emission-absorption terms. With this time discretisation scheme, 
the radiative intensity I(r, x, a, v) of the photons (at time t, position x, with the 
direction D and the frequency v) satisfy the so-called Fleck’s equation on each time 
step 

= k,bl# + k,b( 1 - I) St? fs2 ka(v’) I( ‘) v’)(dW/4n) dv’ 
j; k,(v’) h(d) dv’ (*) 

where: x belongs to a spatial domain D of R3, Q belongs to the unit sphere S2 of 
R3, and v belongs to (0, co). The temperature T is assumed to be constant on each 
spatial cell. For this temperature, denote by b(v) the reduced Planck function, by 
k,(v) the absorption coefficient and by I Fleck’s coefficient. oreover 4 is equal to 
P, up to a constant. 

Q is the Thomson scattering operator which corresponds to the cba~g~~g of the 
direction of the photon velocity. 

The classical Monte Carlo method is well adapted to solve Fleck’s equation (*) if 
the pseudo scattering mean free path [(l - 1) k,] --? is not too small with res 
the size of D, that is, if the scattering term is fess important than the streaming 
terms. But in an optically thick medium (1 - I) is very close to 1 and k, is very 
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large, thus the pseudo-scattering mean free path is very small and there are a lot of 
collisions in any small subdomain; so the tracking of the particle becomes highly 

time consuming. 
To accelerate this Monte Carlo method, we describe in this paper a method to 

avoid very complex trackings of the particles in the optically thick media. The prin- 
ciple of this method is to use a jump as a substitute for the trajectory of a particle 
which undergoes a large number of collisions in a cell. This jump will be sampled 
according to the law I(t, .), where f is the solution of a diffusion equation which 
approximates (*) in the case of an opaque medium. 

In order to find this approximation we make an appropriate scaling in equation 
(*) with a small parameter E related to the mean free path k,(v)-’ of the particles 
and we calculate the limit I of the solution I of (*) when 8 goes to 0 (this is the mul- 
tiple scale technique). 

We first give the result of the calculation with an error of order U(s2) (in 
Sect. 2.1) and an improvement of this result is given in Section 2.2. This method 
works because the limit equation is simple enough and it is easy to have an explicit 
solution of this equation, if we consider the case where the spatial cell is a sphere D. 

In Section 3 we derive the transfer equation satisfied by a Monte Carlo particle 
and we give the explicit solution of the corresponding diffusion equation. This 
solution gives the law of the escape time of the particle out of the sphere D and the 
space distribution law of the particle at the end of the time step if it has not 
escaped. Afterwards (Sect. 4) we study some criteria for the validity of the diffusion 
approximation using a Monte Carlo computation in a sphere. Numerical results are 
given in the last section, they show that there is a very good agreement between the 
classical Monte Carlo method and the method which is accelerated by the random 
walk procedure, although the computer time is much shorter. 

From a philosophical point of view, this method looks like the one of Fleck and 
Canlield [2] and Lynch [3]. But the way to determine the characteristics of the 
jump replacing the tracking of the particle is based on an analytic method instead 
of a probabilistic one; then it is possible to determine when it is appropriate to sub- 
stitute a “random walk” jump for the detailed tracking of the particles. 

The outline of this paper is: 

1. Setting of the problem. 2. Approximation results. . First result. 0 Improvement of the approximation. 
3. Diffusion approximation of the transport equation satisfied by a Momte Carlo particle. l The transport 
equation for a particle. l The diffusion approximation. l Explicit solution of the diffusion equation. 
4. The random walk procedure. l Criteria for random walk. . Description of the random walk 
procedure. 5. Numerical results. References. 

1. SETTING OF THE PROBLEM 

We consider the radiative transfer phenomena during only one time step (say: 
[0, t’] for the sake of simplicity). The framework of Fleck’s modelization is the 
following one (see Fleck-Cummings Cl]). 
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The absorption coefficient is assumed to be independent of time and space 
and the initial temperature T is assumed to be ~o~~ta~t on 

c, the velocity of light, 
, the material temperature to the 4th power p to the rnu~ti~~icativ~ con- 

stant ac/4lt (ac/4 is Stephan’s constant): = (acJ4n) 24, and 

SV 
5 = L-- and h, K are classical constants 

KT > 
; 

that is, j? b(v) dv = 1; @b(v) is the Planck function. 

Thomson’s scattering coefhcient, 

the absorption coefficient, 

Planck’s absorption coefficient, 

the specific internal energy; 6’ = %‘/a 

Fleck’s coefficient, 

pseudo-absorption coefficient, 

pseudo-scattering coefficient. 

Then the radiative intensity I= Z(t, x, L2, v) satisfies 

(ii) I(t, x, 52, v) =O, on i?D 

(iii) P(0, x, a, v) = P(x, 0, v), 

where a13- = (x E XI, a E S2/n, ’ ti < 01, n, is the outward unit normal at x to the 
boundary ~22, and Q is the Thomson scattering operator defined by 

(QI,(x,~,v)=I(x,W,V)-~~*~~+( 

r’” = p”(x, a, v) is the initial radiative intensity. 
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Then we have to solve the following scalar equation in order to find the tem- 
perature @j’ at time 1’, 

6(@‘) - d?(Q) = E,,$ID( - 4xt1Zkp@, 

where Eabs is the absorbed energy in D x [0, t’], 

and IDI is the volume of D. 

2. APPROXIMATION RESULTS 

In an opaque cell the mean free path between two collisions becomes very small, 
the frequency distribution of the particles converges towards a Planck function, the 
velocity distribution becomes isotropic, and the spatial density becomes very close 
to the density of a diffusion process. The aim of this section is to give a 
mathematical form of this fact. 

Therefore consider an opaque cell D and assume that 

OF’ is small enough with respect to the charateristic size of D, (6) 

1 is small enough with respect to 1. 

So we introduce a small parameter F and define 

o(v) = &cr,(V) 

(7) 

4(v) = f ga(v) 

w = ek,, 

t” = Ect. 

Let us introduce some notation: 

X is the projection of a point x of D onto i3D 

cp = <Cob)); qp = ((qb)) [then c2qpop1 = I(1 -I)-‘]; 

Lf = of - op’ob((crf >> + c@f; 

I,@, x, n, v) = I(f/&C, x, a, v). 

(8) 

(9) 
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Equation (4) may be written in the form 

(ii) I,(i, .)=O on i3D 

(iii) I,(O, ) = P. 

2.1. First Result 

Let us denote the Laplace operator by A,. 

OPOSITION 1. Let I be the solution of (10). Let u0 and u, be the solutions of the 
d~f~sio~ equations 

(ii) u,(i,x)=* on aD 

(iii) u,(O, x) = ((l’“(x))), 

(i) !$-$-A,ui+g,u,=O 
0 

(ii) ~I(i,~)+~~~(~,x)=O on aD 
n 

(iii) ~~(0, x) = 0 

(12’) 

with o0 = (( b/(o -t co))) and where Lo is a constant depending only on (T/G~ and o. 
Then there exist two functions q = cp(s; x, Sz, v) and cl, = $(<; 1, k, a, v) corresponding 
to an initial layer term and a boundary layer term [i.e., they satisfy 

Pim cp(s; . ) = 0, lim ij(& .)=Oj, 
s-m c-m 

and we have for small E, 

I,(i, x, a, v) - b(v) u,(t^, x) + E b(v) u,(i, x) - 

where <, is the distance between x and aD (r, = (X-x) ni). 
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The meaning of this proposition is the following. In an opaque cell D, except in a 
short time near i= 0 and except in a boundary layer, the spectral distribution of the 
solution 1, is a Planck distribution, and Z, may be well approximated by 

b(v) 
i 

ug + EU, -- & a.!$ 
a(v) I 

The details of the proof are given in Giorla-Sentis [4] but we give here the formal 
calculus which is behind this result, using the multiple scale technique. (This techni- 
que has been used for a long time in transport problems in a large number of 
papers including [S, 61 and the references of these papers.) 

First, one considers the asymptotic expansion of I,, 

One introduces this expansion in Eq. (10). When one sets to zero the terms which 
are of order c’, 6-l and co one obtains 

L&=0 (13.1) 

(13.2) 

(13.3) 

Equation (13.1) yields 

I, = bu,, where u0 depends only on t” and x. 

Then (13.2) yields 

-b II=--- 0 auo -ax+&> where 
0+w 

u1 depends only on Z and x. 

And for the existence of the I, solution of (13.3) it is necessary and sufficient that 

311 
t j %i- +$+ <(qb))(u,-$b)=O. 
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If one jintroduces the value of I, in this relationship, cme obtains (12)(i). 
other hand, (13.4) and (13.5) give 

cp = eeLs(Pin - h,(O)), 

where edtS denotes the semi-group whose generator is -I,. Srnce q(s; . ) --I 
b((p - bu,(O))) when s goes to co, one sees that rp will be an initial layer term if 
and only if 

ne obtains (12)(iii). Moreover, (12) 
bus it is necessary that u0 
that 

ith this choice of uO, it 

To obtain the desired result, one has to take into account the terms which are of 
order E, that is, it is necessary to have 

(I 3.6) 

oreover, for any X on the boundary 8D, the function $([; 2, X, Q v) has to satisfy 

at.nx$+L$=O 
(14) 

*(0;2,x,~,v)+l,(i,ji,n,v)=O if 

The solvability condition for (13.6) gives (12’)(i) and the condition for 
lim t-a! 11/t<; .I=0 g ives (12’)(ii). Thus it is necessary that uI satisfy Eq. (12’). 
these choices of u. and uIr it may be proved that I,, is a O(a2) term. 

One can now check that u,, + EU~ = u + O(E’), where u is the solution of the dif- 
fusion equation 

(i) $-$dz4+y,(u-@)=O 
0 

L,& 
(ii) u+e----=(I 

co dn 
on 8D 

(iii) ~(0, x) = ((P)). 

(15) 

The boundary condition (15)(ii) (called Robin’s boundary condition) means that 
the diffusion approximation is more accurate if we introduce an e~tra~o~atio~ 
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length (here, a(&/~,)). This fact has been well known for a long time when one 
approximates a classical transport equation by a diffusion equation (this has been 
rigorously proved in Bardos-Santos-Sentis [S]). 

The diffusion coefficient is not exactly equal to Rosseland’s coefficient. In fact the 
approximation principles are different in both cases: Here the temperature is 
assumed to be constant on D; in Rosseland’s approximation there is equilibrium 
(up to order O(E)) between material and radiation (see, e.g., Badham-Larsen- 
Pomraning [ 61). 

Since the angular dependency is not crucial, we may drop the term (G’(&+,/&c)) 
whose integral over S* is zero. Since the boundary layer term may be dropped also, 
we obtain 

I,(i, x, n, v) N u(t, x) b(v) + cL2’&*(P -b{(P))) 

with u a solution of (15). (16) 

2.2. Improvement of the Approximation 

For the sake of simplicity we now drop the right-hand-side term of (IO)(i). (As a 
matter of fact in the sequel (cf. Sect. 3) we only use the previous result in this case). 

Since an accurate estimation of the absorbed energy (i.e., 
12 fomm x)>> dx dt) is required, the previous approximation (16) may be quite 
crude. Indeed if there is no spatial variation of I,, i.e., if Z, = I,(?, v) satisfies 

$+&+ql,=o 

IJO, v) = I’“, 

then the previous approximation yields 

I,(Z, v)=b(v)u(tl)+e-L~‘“2[Iin-b((,=))]+O(&2), 

where 

du 
-$=w 

u(0) = ((P >>. 

But it is easy to find the s2 corrector for I,, 

I,(i, V)=E(i)b(v)+&2ii(~)~(V)+e-L’~“2[lin-b((P))]+O(E4) 

(up to an e* initial layer term), where 

(17) 
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and ii satisfies 

Using this remark, we can improve the result of reposition 1, and instead of 
(16) we take 

v) N ti(i, x) b(v) + c2ti(Z, x) x(v) + ecLfiE’[l”” -b((P))j, 

where U is the solution of the equation 

Lo aa 
LifE--=O 

a’0 aa 
on iiD 

9(0, x) = ((I’“)) -t E2 

Now we write the result (19) with the help of the original variable t. Thus the 
coefficients cO and aM are changed into 

t 

e can check that the Robin boundary condition is equivalent (up to a O(E’) ter ? 
to a Dirichlet condition on an extended domain d = (x E R3/dist(x, D) G &~r;& >. 
And we have 

I(t, x, 62, v) = ii(t, x) 6(v) -i- cLcrJc(lin- b{(P))), WP 

where ii is the solution of 

ldti 1 ---- 
eat 3a,, 

A,ii + l((k,g)) ii = @ in B 

ii=0 on aI3 

U(0, x) = (<I’“)) I, 

(23) 
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(24) 

We can now estimate the energy absorbed during the time interval [0, t’] with 
the formulation (22), 

j;’ ((oaZ(t,x)))dt=l((k,l;)) j;ii(t,x)dt 

(I’” - b((l’“))) ds 

e l((k,b”)) j; ii(t, x) dt 

-Lx(r’” - b<(P))) ds . 

But it is easy to show that 

e-Ls(li” - b{(p))) ds 
)-i&(-(:)+(g)). 

We can conclude that 

jr’ ((a,Z(t, x))) dt N I((k&) jr’ zl(t, x) dt +; [((I’“)) -U(O, x)]. (25) 
0 0 

So we shall obtain the same estimation for the absorbed energy if, instead of (22), 
we use Z(t, x, 0, v) N I(t, x, S2, v), where 

I(t, x, Q, v) = qt, x) a(v) for t > 0, with U solution of (23), (26) 

and if we take (25) into account. 

3. DIFFUSION APPROXIMATION OF THE TRANSPORT EQUATION 
SATISFIED BY A MONTE CARLO PARTICLE 

Let us recall the main outlines of the classical Monte Carlo method to solve (4). 
On the time step [0, t’] particles are emitted from the source S (including volume 
emission, boundary emission, and initial radiation energy) and are tracked from 
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collision to cohision until the time t’. Formally this corresponds to a random walk 
in the phase space G$ = ( , v) ), each point 

ion, census, or escape event. 

3.1. The Transport Equationfm a Particle 

e take an interest here in only one Monte Carlo photon already emitted. For 
the sake of simplicity we suppose the particle to b ted at time t, = 0, at point 
x0 with an energy (or weight) e, = 1. The initial tion R, is supposed to be 
~~~forrn~y distributed on the unit sphere S2 and th 
given probability f(v) on JO, c cc [. 

Since the diffusion approximation needs a constant temperature in the whole 
domain, we must track the particle in a part D included in the cell containing x0. 
The transport problem corresponding to this photon is then Eq. (4), without the 
r~gbt-hand-side term of (4)(i), that is, 

I==0 if (x, a) E ao- (27) 

irac d~stribntio~), 

The emission and tracking of the photons are equivalent to the sampling of a 
I >..., Rj,... ) related to a probability p computed from the source 

S(R,) and the stochastic kernel (R,+ R,, I ) (see Spanier-Gelbard CT]). The 
relation between this probability p on the space of random walks and the ~~te~s~~~~ % 
solution of (27) is given by the following: 

For every function G on 3, we can construct a random variable g, such that 

where E,[lgj is the expected value of g with respect to up. 
For our purpose there are three very important random variables. These are 

defined at a ti corresponding to an event of the tracking, i.e., at a time ti of 
random walk 0, R, )..., R, )... ). (‘t 1 is always possible to stop the photon at lj 
computing these estimators and to continue the tracking since this is a arkov 
recess ). 
Radiation energy (or weight) at time tj, 

e(to) = 1 

e(tj)=e(t,-,)exp(-o,(v,_,)c(t,-~i-,)} 

e(t,) = 0 if x,j $ D. 
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Absorbed energy on [IO, tj], 

eabs(tj) = 1 - 4tj) 

=fi II1-eXp(-o,(Vi-1)C(ti-ti_,)}] if XjED. 
i=l 

Number of particles at time tj, 

eo( tj) = 1 if xjfzD 

e,( tj) = 0 if xj$ D. 

These three random variables have the following expected values: 
Radiation energy on D at time t, 

E,[e(t)] = l&(t) =k jD dx s(p dv Is* da I(R). 

Absorbed energy in D x [0, t], 

Average number of particles in D at time t, 

&Cedt)l = J?(t) = f jD dx 6 dv js2 da P(R), 

where P is the solution of the transport problem (27) without the absorption term 

a,(~‘) P(Q’, v’) g dv’ = 0. 

3.2. The Diffusion Approximation 

Let us now write the diffusion approximation of Eqs. (27) given by (26). We 
introduce the function a( t, x) solution of the diffusion equation 

- ii = 0, XEIYD (28) 

qo, x) = b(x -x0). 
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The specific energy I supposed to be isotrope, is then approximated for f > 

I”( 4 x, a, v) = 2 I, e-"&(v) ii( t, x)~ 

Interpretation 

We can see from Eq. (29) that, when the approximation is feasible, the weight of 
the photon is 

e(t)=Z,exp(-6,ct) 

and the frequency is distributed according to 6(v) which is, to first order, the nor- 
malized Planck function b(v). The position x at time t is distributed according to 
qt, x). 

Because we have removed the initial layer, we must make this approximation 
only when time t is large enough. Consequently there is a discontinuity for l= 0 rn 
the expression of z the weight of the photon (Q = 1 at I = 0) becomes P, when 
t-rQ+, t # 0. We can say that this jump comes from the modification of the he- 
quency spectrum (f(v) at t = 0 becomes b”(v) at t Z 0). The difference (1 - Z,) is 
added to the absorption energy into D as shown in Section 2 (Figs. 1 and 2). 

FIG. 1. The domain D is assumed to be R3. Here k,(v)= Gv’ exp(-v/T); f(v) =k,(u).bjv) kpi; 
I= III-‘. The Monte Carlo solution of problem (27) is compared with the diffusion approximation 
I?~(I) = I, exp( -b,ct) and with exp( --d,ct). 
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FIG. 2. With the same assumptions as in Fig. 1, we plot the frequency spectrum at time t = 0, 
t=lO-‘Zs and t=10e9s. 

3.3. Explicit Solution of the Diffusion Equation 

We now assume D to be a sphere of R3 with center x0. Since the temperature 
must be constant in the domain D, D will be the largest sphere with center x0 
included into the cell. We denote by R, the radius of D, R,, = RO + L,cT&. the 
radius of D and r = I]x - x0/I the spherical variable. 

The solution ii of the diffusion equation (28) in b is 

ir(i,r)=-& z Fsin 
0” 1 

where 

We introduce the two functions 

F(t, R) = joR i?(t, r) 4m2 dr 
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where X = HER/&, and 

P(t) is the average number of particles in D at time t and the f~~~t~~~ 
-+ F(t, R)/P(f) is the spatial distribution of particles in the sphere at time t. 

ereafter we shall use P(t) instead of F(t, R,). The difference between these two 
tities is small and P(t) has the advantage of dependi g only on one parameter. 

e can then write the radiation energy and the absorbe energy using oniy P(b), 

E,(f) = 1*e-“P”‘P(I) 

Eabs(t) = (1 -I,) + I, lo’ c6,e-“P’“P(s) ds 

Let us recall that the first term (1 - I,) comes from the jump at t = 0 of the 
radiation energy, i.e., of the integration of the initial layer. 

4. THE RANDOM WALK OCEDLJRE 

4.1. Criteria for Random alk 

We must determine empirically the domains of validity of the diffusion 
a~~roximat~Qn of Fleck’s transport equation in a sphere. To do this, we compare 
the solution of (27) calculated using Fleck’s Monte Carlo method with the exact 
solution given in Section 3.3. A priori, these conditions are: 

e coefficient I must be small enough to satisfy the assumption (7) and to 
asymptotic expansions in E. 

e must observe the tracking at a time large enough (see Sect. 3.2). 
-The radius R, of the sphere II must be large (compared to u,&) in order to 

satisfy the assumption (6). 

The extr ation coefficient I,,, is determined by ~ornpar~~g the erica! 
solution of ) with the family uLO depending on the parameter k,. n the 
macroscopic absorption cross-section k, does not depend on t 
when there is no Thomson scattering (kTh = Cl), the coefficient k, was ~a~c~~ated by 
Chandrasekhar [S] and the numerical tests give us the same value L, = 0.71. 

e will study with particular care the case of analytical opacities without Thom- 
son scattering 

k,(v) = constant (1 -exp {- g)), 

k,, = 0. 
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We will consider three different distributions of the initial frequency 

f(v)=b(v) [then I, = 11 

k,(v) b(v). I 
f(v)= k 9 -l-16.39- 

P 1-I 

f(v) = qv - vo); . 

We can see that the frequency is distributed according to h(v) N b(v) when the 
diffusion approximation is suitable. The first distributionf(v) corresponds to a par- 
ticle we track just after its random walk. The second distribution is exactly the fre- 
quency spectrum of a particle emitted in the cell during the time step. It is also the 
distribution of a photon just after a Fleck collision. When the frequency of a par- 
ticle is not distributed according to these two functions (e.g., when the particle 
comes from another cell) we used the Dirac 6(v - vO), where vO is the frequency of 
the photon. 

The numerical tests show that the extrapolation coefficient is around 2, and that 
the diffusion approximation is suitable when using the criteria (Figs. 3-5), 

16 0.01 

R,>5o& 

and 

R~350,1(+J if f(v)=@v-v,). 

FIG. 3. Estimation of the extrapolation length. Comparison between Monte Carlo estimation and 
diffusion approximation (for various values of L,) of the number of particles I!?(r) and the radiative 
energy .ER(r). Here D is a sphere of radium 5u& and I= 10M3. 
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FIG. 4. Domain of validity. Comparison between Monte Carlo estimation and diff&on 
approximation of the number of particles I?‘(t). D is a sphere of radium xug$, with I= IV3 and L, = 2. 

The last criterion ensures that the photon with initial frequency vO has a first 
Fleck collision near the center of the sphere. (The particles of high frequency, emit- 
ted, for example, from a hot black body, go through the cell without Fleck 
collisions and they do not satisfy this criterion.) 

The tests prove that the frequency spectrum tends to b(v) very quickly an 
the term I+ in the expression of the energy yields a more accurate result, without 
any additional computation. 

FIG. 5. Comparison between Monte Carlo and diffusion approximation of the radiative energy E&t) 
and the absorption energy E,(t) with the same value as in Fig. 4. 
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4.2. Description of the Random Walk Procedure 

The random walk procedure is grafted on the Monte Carlo method without dis- 
tinction between optically thin or optically thick medium. At the beginning of the 
tracking of each photon (going from an event Rj- 1 to another R,) we calculate the 
greatest sphere D with center xj- 1 included in the cell and we test the random walk 
criteria. If they are satisfied we sample the escape time z from D according to the 
distribution 1 -P(z). The absolute escape time is then 0 = tj- I + z. 

If 8 is less than the end of the time step, the particle’s position xj is sampled 
uniformly on the boundary BD, the frequency vj according to b(v), the direction Qj 
is distributed according to Lambert’s law outside of the sphere and the new weight 
is 

If 6 is not in the time interval, we stop the photon at the end of this one. The 
radius r is sampled with the repartition F(t, r)/P(t) in [0, R,] and the position xi is 
uniformly distributed on the sphere of radius Y. Then vi is sampled according to 
b(v), Qj is uniformly distributed on S2 and the weight ej is calculated as previously. 
(Note that the procedure is the same as in [2] and [3]; however, our diffusion 
approximation is not the same except for coefficient a,,; moreover the sample of 
frequency and escape time, and the calculus of the absorption energy are not iden- 
tical.) 

5. NUMERICAL RESULTS 

We now present a numerical example with the random walk procedure. It is a 
problem described in Fleck-Cummings [ 11: A slab of thickness 4 cm, with an 
optically thick medium between 2 and 2.4 cm is heated by a black body source. The 
spatial step size is Ax = 0.4 cm and the cross sections are 

k,,=O 

k,=$(l-exp{-$1) if v and Tare given in kilo-electron-volts. 

In the sixth cell, the macroscopic cross-section k, is multiplied by a factor of 
1000. (Note that it is not the factor used in Fleck-Cummings Cl].) The boundary 
conditions are 

-Black body emission with T= 1 Kev in x = 0 cm. 
-Purely absorbing medium for x > 4 cm. 
-Initial temperature T, = 0.001 Kev. 
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FIG. 6. Temperature T versus time in the ten cells using computation (b) and temperature versus 
space at ditlerent times. 
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The medium is supposed to be a perfect gas. The specific energy d is given by the 
equation of state 

d = 6.9913 lo6 x T (in CGS units). 

We have compared three computations: 

(a) Fleck’s Monte Carlo method, without random walk. 
(b) Random walk with Lo = 2 and the criterion R, 3 50~6, 
(c) Random walk with L, = 0 and the criterion R, 3 20a& 

The results are the same up to the statistical fluctuations. 
At time t = 1 ns (1 ns = lo-’ set), with time step At = 0.02 ns, we have 

(4 (b) Cc) 

Computer time 
Number of 

particles 
Number of Fleck’s 

scattering 
Number of random 

walk procedures 

3 h 04 min 6 min 22 min 
13,233 13,381 13,355 

379 x lo6 11 x lo6 44 x lo6 

0 89,000 59,000 

Remark 1. The random walk procedure with Lo =0 and the criterion 
R,, B 50;& gave us wrong results: the extrapolation length is essential. 

Remark 2. Fleck’s coefficient I is very small in the opaque medium 
(II: 5 x 10-4). Hence it follows that c?r 1: Zkp. 

Conclusion 

The diffusion approximation of Fleck’s transfer equation given by the multiple 
scales technique is well satisfied by the numerical tests, hence the random walk 
procedure which has been described is reliable when the criteria of validity are 
satisfied. 

The method which has been described here for Fleck’s equation may be used for 
other equations where the streaming terms are the most important except in a 
collisional region in which the scattering term is very important, e.g., in the 
Fokker-Planck equation for charged particles in a plasma. The crucial point of the 
method is to find an accurate limit of the solution of the considered equation in a 
collisional region such that this limit function may be computed very easily for a 
simple geometry. 
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